Tuesday, January 15, 2008

"The Checklist" by Atul Gawande (The New Yorker)

Lengthy highlights for a simple concept article. Irony? Check.

Article

Highlights:

Consider a case report in The Annals of Thoracic Surgery of a three-year-old girl who fell into an icy fishpond in a small Austrian town in the Alps. She was lost beneath the surface for thirty minutes before her parents found her on the pond bottom and pulled her up. Following instructions from an emergency physician on the phone, they began cardiopulmonary resuscitation. A rescue team arrived eight minutes later. The girl had a body temperature of sixty-six degrees, and no pulse. Her pupils were dilated and did not react to light, indicating that her brain was no longer working.

But the emergency technicians continued CPR anyway. A helicopter took her to a nearby hospital, where she was wheeled directly to an operating room. A surgical team put her on a heart-lung bypass machine. Between the transport time and the time it took to plug the inflow and outflow lines into the femoral vessels of her right leg, she had been lifeless for an hour and a half. By the two-hour mark, however, her body temperature had risen almost ten degrees, and her heart began to beat. It was her first organ to come back.

After six hours, her core temperature reached 98.6 degrees. The team tried to put her on a breathing machine, but the pond water had damaged her lungs too severely for oxygen to reach her blood. So they switched her to an artificial-lung system known as ECMO—extracorporeal membrane oxygenation. The surgeons opened her chest down the middle with a power saw and sewed lines to and from the ECMO unit into her aorta and her beating heart. The team moved the girl into intensive care, with her chest still open and covered with plastic foil. A day later, her lungs had recovered sufficiently for the team to switch her from ECMO to a mechanical ventilator and close her chest. Over the next two days, all her organs recovered except her brain. A CT scan showed global brain swelling, which is a sign of diffuse damage, but no actual dead zones. So the team drilled a hole into the girl’s skull, threaded in a probe to monitor her cerebral pressure, and kept that pressure tightly controlled by constantly adjusting her fluids and medications. For more than a week, she lay comatose. Then, slowly, she came back to life.

First, her pupils started to react to light. Next, she began to breathe on her own. And, one day, she simply awoke. Two weeks after her accident, she went home. Her right leg and left arm were partially paralyzed. Her speech was thick and slurry. But by age five, after extensive outpatient therapy, she had recovered her faculties completely. She was like any little girl again.


A decade ago, Israeli scientists published a study in which engineers observed patient care in I.C.U.s for twenty-four-hour stretches. They found that the average patient required a hundred and seventy-eight individual actions per day, ranging from administering a drug to suctioning the lungs, and every one of them posed risks. Remarkably, the nurses and doctors were observed to make an error in just one per cent of these actions—but that still amounted to an average of two errors a day with every patient. Intensive care succeeds only when we hold the odds of doing harm low enough for the odds of doing good to prevail.


This is the reality of intensive care: at any point, we are as apt to harm as we are to heal. Line infections are so common that they are considered a routine complication. I.C.U.s put five million lines into patients each year, and national statistics show that, after ten days, four per cent of those lines become infected. Line infections occur in eighty thousand people a year in the United States, and are fatal between five and twenty-eight per cent of the time, depending on how sick one is at the start. Those who survive line infections spend on average a week longer in intensive care. And this is just one of many risks. After ten days with a urinary catheter, four per cent of American I.C.U. patients develop a bladder infection. After ten days on a ventilator, six per cent develop bacterial pneumonia, resulting in death forty to fifty-five per cent of the time. All in all, about half of I.C.U. patients end up experiencing a serious complication, and, once a complication occurs, the chances of survival drop sharply.


Here, then, is the puzzle of I.C.U. care: you have a desperately sick patient, and in order to have a chance of saving him you have to make sure that a hundred and seventy-eight daily tasks are done right—despite some monitor's alarm going off for God knows what reason, despite the patient in the next bed crashing, despite a nurse poking his head around the curtain to ask whether someone could help "get this lady's chest open." So how do you actually manage all this complexity? The solution that the medical profession has favored is specialization.


Expertise is the mantra of modern medicine. In the early twentieth century, you needed only a high-school diploma and a one-year medical degree to practice medicine. By the century's end, all doctors had to have a college degree, a four-year medical degree, and an additional three to seven years of residency training in an individual field of practice—pediatrics, surgery, neurology, or the like. Already, though, this level of preparation has seemed inadequate to the new complexity of medicine. After their residencies, most young doctors today are going on to do fellowships, adding one to three further years of training in, say, laparoscopic surgery, or pediatric metabolic disorders, or breast radiology—or critical care. A young doctor is not so young nowadays; you typically don't start in independent practice until your mid-thirties.


Expertise is the mantra of modern medicine. In the early twentieth century, you needed only a high-school diploma and a one-year medical degree to practice medicine. By the century's end, all doctors had to have a college degree, a four-year medical degree, and an additional three to seven years of residency training in an individual field of practice—pediatrics, surgery, neurology, or the like. Already, though, this level of preparation has seemed inadequate to the new complexity of medicine. After their residencies, most young doctors today are going on to do fellowships, adding one to three further years of training in, say, laparoscopic surgery, or pediatric metabolic disorders, or breast radiology—or critical care. A young doctor is not so young nowadays; you typically don't start in independent practice until your mid-thirties.


In 2001, though, a critical-care specialist at Johns Hopkins Hospital named Peter Pronovost decided to give it a try. He didn't attempt to make the checklist cover everything; he designed it to tackle just one problem, the one that nearly killed Anthony DeFilippo: line infections. On a sheet of plain paper, he plotted out the steps to take in order to avoid infections when putting a line in.


These [5] steps are no-brainers; they have been known and taught for years. So it seemed silly to make a checklist just for them. Still, Pronovost asked the nurses in his I.C.U. to observe the doctors for a month as they put lines into patients, and record how often they completed each step. In more than a third of patients, they skipped at least one.

The next month, he and his team persuaded the hospital administration to authorize nurses to stop doctors if they saw them skipping a step on the checklist; nurses were also to ask them each day whether any lines ought to be removed, so as not to leave them in longer than necessary. This was revolutionary.


The new rule made it clear: if doctors didn't follow every step on the checklist, the nurses would have backup from the administration to intervene.

Pronovost and his colleagues monitored what happened for a year afterward. The results were so dramatic that they weren't sure whether to believe them: the ten-day line-infection rate went from eleven per cent to zero. So they followed patients for fifteen more months. Only two line infections occurred during the entire period. They calculated that, in this one hospital, the checklist had prevented forty-three infections and eight deaths, and saved two million dollars in costs.


The researchers found that simply having the doctors and nurses in the I.C.U. make their own checklists for what they thought should be done each day improved the consistency of care to the point that, within a few weeks, the average length of patient stay in intensive care dropped by half.


The checklists provided two main benefits, Pronovost observed. First, they helped with memory recall, especially with mundane matters that are easily overlooked in patients undergoing more drastic events.

...

A second effect was to make explicit the minimum, expected steps in complex processes. Pronovost was surprised to discover how often even experienced personnel failed to grasp the importance of certain precautions.

...

Checklists established a higher standard of baseline performance.


For his doctoral thesis, he examined intensive-care units in Maryland, and he discovered that putting an intensivist on staff reduced death rates by a third. It was the first time that someone had demonstrated the public-health value of using intensivists. He wasn't satisfied with having proved his case, though; he wanted hospitals to change accordingly. After his study was published, in 1999, he met with a coalition of large employers known as the Leapfrog Group. It included companies like General Motors and Verizon, which were seeking to improve the standards of hospitals where their employees obtain care. Within weeks, the coalition announced that its members expected the hospitals they contracted with to staff their I.C.U.s with intensivists. These employers pay for health care for thirty-seven million employees, retirees, and dependents nationwide. So although hospitals protested that there weren't enough intensivists to go around, and that the cost could be prohibitive, Pronovost's idea effectively became an instant national standard.

The scientist in him has always made room for the campaigner. People say he is the kind of guy who, even as a trainee, could make you feel you'd saved the world every time you washed your hands properly.


In 2003, however, the Michigan Health and Hospital Association asked Pronovost to try out three of his checklists in Michigan's I.C.U.s.

...

Sinai-Grace is a classic urban hospital. It has eight hundred physicians, seven hundred nurses, and two thousand other medical personnel to care for a population with the lowest median income of any city in the country. More than a quarter of a million residents are uninsured; three hundred thousand are on state assistance. That has meant chronic financial problems. Sinai-Grace is not the most cash-strapped hospital in the city—that would be Detroit Receiving Hospital, where a fifth of the patients have no means of payment. But between 2000 and 2003 Sinai-Grace and eight other Detroit hospitals were forced to cut a third of their staff, and the state had to come forward with a fifty-million-dollar bailout to avert their bankruptcy.

...

Meanwhile, the teams faced an even heavier workload because of new rules limiting how long the residents could work at a stretch. Now Pronovost was telling them to find the time to fill out some daily checklists?

Tom Piskorowski, one of the I.C.U. physicians, told me his reaction: "Forget the paperwork. Take care of the patient."


Pronovost had been canny when he started. In his first conversations with hospital administrators, he didn't order them to use the checklists. Instead, he asked them simply to gather data on their own infection rates. In early 2004, they found, the infection rates for I.C.U. patients in Michigan hospitals were higher than the national average, and in some hospitals dramatically so. Sinai-Grace experienced more line infections than seventy-five per cent of American hospitals. Meanwhile, Blue Cross Blue Shield of Michigan agreed to give hospitals small bonus payments for participating in Pronovost's program. A checklist suddenly seemed an easy and logical thing to try.


In December, 2006, the Keystone Initiative published its findings in a landmark article in The New England Journal of Medicine. Within the first three months of the project, the infection rate in Michigan's I.C.U.s decreased by sixty-six per cent. The typical I.C.U.—including the ones at Sinai-Grace Hospital—cut its quarterly infection rate to zero. Michigan's infection rates fell so low that its average I.C.U. outperformed ninety per cent of I.C.U.s nationwide. In the Keystone Initiative's first eighteen months, the hospitals saved an estimated hundred and seventy-five million dollars in costs and more than fifteen hundred lives. The successes have been sustained for almost four years—all because of a stupid little checklist.


Tom Wolfe's "The Right Stuff" tells the story of our first astronauts, and charts the demise of the maverick, Chuck Yeager test-pilot culture of the nineteen-fifties. It was a culture defined by how unbelievably dangerous the job was. Test pilots strapped themselves into machines of barely controlled power and complexity, and a quarter of them were killed on the job. The pilots had to have focus, daring, wits, and an ability to improvise—the right stuff. But as knowledge of how to control the risks of flying accumulated—as checklists and flight simulators became more prevalent and sophisticated—the danger diminished, values of safety and conscientiousness prevailed, and the rock-star status of the test pilots was gone.

Something like this is going on in medicine. We have the means to make some of the most complex and dangerous work we do—in surgery, emergency care, and I.C.U. medicine—more effective than we ever thought possible. But the prospect pushes against the traditional culture of medicine, with its central belief that in situations of high risk and complexity what you want is a kind of expert audacity—the right stuff, again. Checklists and standard operating procedures feel like exactly the opposite, and that's what rankles many people.


Pronovost remains, in a way, an odd bird in medical research. He does not have the multimillion-dollar grants that his colleagues in bench science have. He has no swarm of doctoral students and lab animals. He's focussed on work that is not normally considered a significant contribution in academic medicine. As a result, few other researchers are venturing to extend his achievements. Yet his work has already saved more lives than that of any laboratory scientist in the past decade.


I called Pronovost recently at Johns Hopkins, where he was on duty in an I.C.U. I asked him how long it would be before the average doctor or nurse is as apt to have a checklist in hand as a stethoscope (which, unlike checklists, has never been proved to make a difference to patient care).

"At the current rate, it will never happen," he said, as monitors beeped in the background. "The fundamental problem with the quality of American medicine is that we've failed to view delivery of health care as a science. The tasks of medical science fall into three buckets. One is understanding disease biology. One is finding effective therapies. And one is insuring those therapies are delivered effectively. That third bucket has been almost totally ignored by research funders, government, and academia. It's viewed as the art of medicine. That's a mistake, a huge mistake. And from a taxpayer's perspective it's outrageous ."


I asked him how much it would cost for him to do for the whole country what he did for Michigan. About two million dollars, he said, maybe three.

He's already devised a plan to do it in all of Spain for less.


"We could get I.C.U. checklists in use throughout the United States within two years, if the country wanted it," he said.

So far, it seems, we don't. The United States could have been the first to adopt medical checklists nationwide, but, instead, Spain will beat us. "I at least hope we're not the last," Pronovost said.

No comments: